Model of SNARE-Mediated Membrane Adhesion Kinetics
نویسندگان
چکیده
SNARE proteins are conserved components of the core fusion machinery driving diverse membrane adhesion and fusion processes in the cell. In many cases micron-sized membranes adhere over large areas before fusion. Reconstituted in vitro assays have helped isolate SNARE mechanisms in small membrane adhesion-fusion and are emerging as powerful tools to study large membrane systems by use of giant unilamellar vesicles (GUVs). Here we model SNARE-mediated adhesion kinetics in SNARE-reconstituted GUV-GUV or GUV-supported bilayer experiments. Adhesion involves many SNAREs whose complexation pulls apposing membranes into contact. The contact region is a tightly bound rapidly expanding patch whose growth velocity v(patch) increases with SNARE density Gamma(snare). We find three patch expansion regimes: slow, intermediate, fast. Typical experiments belong to the fast regime where v(patch) ~ (Gamma(snare)(2/3) depends on SNARE diffusivities and complexation binding constant. The model predicts growth velocities ~10 - 300 microm/s. The patch may provide a close contact region where SNAREs can trigger fusion. Extending the model to a simple description of fusion, a broad distribution of fusion times is predicted. Increasing SNARE density accelerates fusion by boosting the patch growth velocity, thereby providing more complexes to participate in fusion. This quantifies the notion of SNAREs as dual adhesion-fusion agents.
منابع مشابه
SNARE-mediated trafficking of a5b1 integrin is required for spreading in CHO cells
In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and bref...
متن کاملA Kinetic Investigation of a Carrier-Mediated Transport through a Bulk Liquid Membrane
The kinetics of the potassium thiocyanate transport mediated by dicyclohexyl-18-crown-6 (L) through a bulk liquid membrane is studied experimentally and theoretically. The proposed model is based on the assumption of a pure diffusion of the complex salt [K·L]+SCN¯ through the liquid membrane stagnant films at the interfaces. It illustrates the ...
متن کاملSNARE-mediated membrane traffic modulates RhoA-regulated focal adhesion formation.
In the present study, we examined the role of soluble NSF attachment protein receptor (SNARE)-mediated membrane traffic in the formation of focal adhesions during cell spreading. CHO-K1 cells expressing a dominant-negative form of N-ethylmaleimide-sensitive factor (E329Q-NSF) were unable to spread as well as control cells and they formed focal adhesions (FAs) that were larger than those in cont...
متن کاملSNARE-mediated membrane traffic is required for focal adhesion kinase signaling and Src-regulated focal adhesion turnover.
Integrin signaling is central to cell growth and differentiation, and critical for the processes of apoptosis, cell migration and wound repair. Previous research has demonstrated a requirement for SNARE-dependent membrane traffic in integrin trafficking, as well as cell adhesion and migration. The goal of the present research was to ascertain whether SNARE-dependent membrane trafficking is requ...
متن کاملDistinct initial SNARE configurations underlying the diversity of exocytosis.
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e....
متن کامل